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Secondary current and river-meander formation 

By PETER K. KITANIDIS AND JOHN F. KENNEDY 
Institute of Hydraulic Research, The University of Iowa, Iowa City, Iowa 52242 

(Received 6 September 1983) 

A small-perturbation stability analysis is developed for investigation of the role of 
the secondary current accompanying channel curvature in the initiation and early 
development of meanders of alluvial and ice- or rock-incised streams. A small 
sinusoidal perturbation in the channel alignment of an initially straight prismatic 
channel is introduced. The velocity of the secondary flow is calculated for uniform 
quasi-steady flow conditions by application of the equation of the conservation of 
moment of momentum. The formulation is then closed by introducing the assumption 
that the differential, between the outJer and inner banks, rate of boundary erosion, 
dissolution or melting (for incised channels) or sediment discharge (for alluvial 
channels) is proportional to the strength of the secondary flow. This formulation leads 
to a linear differential equation which is solved for its orthogonal components, which 
give the rates of meander growth and downstream migration. It is shown that the 
amplitude of the meanders tends to increase and that the meanders migrate 
downstream. The dominant wavelength and the corresponding phase shift between 
channel meandering and the velocity of the spiral motion are calculated as those 
corresponding to  the fastest growth rate. The results are found to be in good 
agreement with data reported by others. 

1. Introduction 
Practically all streams flowing in channels formed by the flows themselves exhibit 

an engaging feature: their channels are seldom straight along reaches of more than 
a few channel widths. Instead, alluvial, rock-incised and supraglacial meltwater 
streams are all observed to form the well-known, sinuous, migrating, successive 
channel curves known as meanders. Elucidation and formulation of the mechanisms 
responsible for stream meandering has been the subject of continuing inquiry for well 
over a century (Kelvin 1876). However, it is only relatively recently (notably since 
Leliavsky 1955; see p. 122) that the critical role of the secondary current, produced 
by the interaction of the curvature and the vertical gradient of the primary-flow 
velocity, has been fully appreciated. Moreover, there is still not general accord among 
investigators that the secondary current is the dominant mechanism responsible for 
meandering, or how it should be treated mathematically (see e.g. Ikeda, Parker & 
Sawai 1981; Parker, Sawai & Ikeda 1982; Falc6n Ascanio & Kennedy 1983). 

Zimmermann & Kennedy (1978, p. 34) describe the role of secondary currents in 
alluvial-channel meandering as follows : 

Near the bed, where the concentration of transported sediment is higher, the secondary 
current moves sediment inward across the channel and deposits some of i t  near the inside 
of the bend, while the concave bank is subjected to the erosive attack of the sediment-deficient 
fluid from the upper levels of the stream and the bed near the outside bank is scoured. It 
is this pattern of scour and deposition produced by the secondary flow that leads to  the 
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increase in channel sinuosity and that produces the transverse bed slope that i s  one of the 
dominant characteristics of alluvial channel meanders. Accordingly, any analytical model 
of flow in river bends must include a mathematical description of the secondary flow and 
its effect on the local direction and rate of sediment transport. 

Falc6n Ascanio & Kennedy (1983) argue further that in strongly meandering channels 
(i.e. those with large-amplitude meanders), it  is the greater streamwise velocity near 
the outer (concave) bank and the bank caving, both produced by the larger local depth 
there, and not the secondary current itself, that produces erosion along the outsides 
of channel bends. 

It appears that  the secondary current may also be responsible for the formation, 
growth and migration of meanders in incised channels in ice and rock. The spiralling 
secondary flow transports near-surface fluid with its greater primary-flow velocity 
to and along the outer banks and nearby bed, and thereby subjects these regions to 
intensified erosion or melting. I n  the case of ice channels, the secondary current along 
the free surface also advects heat, transferred from the air to the flowing liquid, to 
the outer-bank region of the channel, and further increases the melting rate there. 

Reviews of the extensive literature on free-surface flow in curved or meandering 
channels have been presented by Callandar (1968, 1978) and Falc6n Ascanio (1979). 
Of particular interest are the stability analyses which examine the initiation and early 
development of meanders. Such analyses have been presented by Hansen (1  967), 
Callandar (1968), Engelund & Skovgaard (1973), Hayashi (1973), Parker (1975,1976), 
Ikeda et al. (1981), Parker et al. (1982) and others. Most of these deal with mechanisms 
other than the secondary current associated with channel curvature. For example, 
Parker (1975) utilized potential-flow theory to study the effects on channel geometry 
of the primary-flow-velocity perturbations produced by standing waves. 

The small-perturbation stability analysis developed here investigates the role of 
the secondary current in the initiation and early development of meanders in alluvial 
and ice- and rock-incised channels. The first step of the analysis is calculation of 
the streamwise distribution of the strength of the secondary current in flow in a 
rectangular channel with sinusoidal centreline. A closure relation then is adopted to 
relate the differential, between the outer and inner banks, rate of boundary dissolution 
or melting (for incised channels), or sediment discharge (for alluvial channels) to the 
strength of the secondary flow. In  this step, the details of the erosion4eposition 
process are overlooked, and instead the lateral migration of the centroid of the 
incremental control volume is treated. Introduction of the secondary-flow equations 
into the closure relation yields a linear differential equation that is solved for its 
orthogonal components, which give the rates of meander growth and downstream 
migration. The expected meander wavelength is calculated as that  with the fastest 
initial growth rate. The resulting analytical model is found to  be applicable to all 
three types of channels, and to yield generally satisfactory predictions of the 
principal features of their meandering. Results reported by others are used in the 
verification of the analysis. 

2. Analytical model 
The flow to be analysed is depicted in figure 1, which also defines some of the 

notation. The channel cross-section may be treated as rectangular, because the 
analysis is concerned with the initial stages of meander development before the 
channel shape becomes distorted. Moreover, because an integral-type analysis is 
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FIGURE 1.  Definition sketch for sinusoidal-channel flow. 

utilized, the details of the channel section, velocity distributions, etc are not critical. 
The primary flow is assumed to be uniform and quasi-steady. The latter assumption 
is justified on the grounds that the characteristic times associated with meander 
growth and migration are much smaller than the characteristic time of the primary 
flow. 

The primary-flow velocity profile will be described by the power law 

where, in addition to the quantities defined in figure 1, V = surface velocity of 
primary flow at r = re ,  rc = local radius of curvature of channel centreline, = mean 
(section-averaged) flow velocity, and l /n = velocity power-law exponent. 

For calculation of the moment-of-momentum fluxes, it will be assumed that the 
vertical and horizontal components of the secondary current are linearly distributed, 
as depicted in figure 1 .  The strength of the former in relation to  the latter shown in 
figure 1 is suggested by simple application of continuity to each channel-section 
quadrant. It is realized that these distributions violate the continuity equation 
locally, and also the boundary conditions. However, it was found that utilization of 
reasonable assumed distributions that do satisfy these requirements has only a minor 
effect on the computed moment-of-momentum flux and boundary shear stress. 

8 FLY 144 
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Because these velocities are integrated over the cross-section, the details of their 
distributions are not particularly important. The strength of the secondary current 
will be calculated through application of the equation of conservation of moment of 
momentum. A detailed development of the analytical basis for this line of inquiry 
is presented by ,Jonsson (1982). It has been utilized previously in the analysis of flow 
in curved channels by Zimmermann & Kennedy (1978) and Falctin Ascanio & 
Kennedy (1983). In this type of formulation, the centrifugal torque about the flow's 
cross-section centroid (due to the interaction of channel curvature and the cross- 
sectional variability of primary-flow velocity) is set equal to  the torque exerted by 
circumferential boundary shear stress and the streamwise rate of variation of the flux 
of moment-of-momentum, also computed about the cross-section centroid. 

For a channel increment of length ds = ?,do, the centrifugally induced torque 
about the centroid of the flow section is 

where 

The torque per unit length of channel centreline is then given by 

This torque is partially balanced by that produced by boundary shear stress, which 
when computed about the centroid of the flow section is 

d 1 (5 ) dT, = 71h2b-+71,26d ds, 
( 2  

where 71h = horizontal component of shear stress on the bed, and 71v = vertical 
component of shear stress on the banks. Because U -g V, where U = characteristic 
secondary-flow velocity, it may be assumed that these shear stresses are related to 
the average primary-flow boundary shear strcss ro through 

and 

where a is a dimensionless coefficient of order one. Prom (5)-(7) there results 

dTn d U  
ds 2 8  

- a7() P-  =, 

(7) 

where P E wetted perimeter of the channel. The flux of moment-of-momentum 
(about the section centroid) is given by 
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where u = velocity of the secondary current in the plane of the flow section, 
I = distance from the centroid of the flow section, and A, 3 area of flow section. Note 
that the primary-flow velocity is perpendicular to the flow section, and therefore 
terms involving its cross-product do not enter (9). After a somewhat lengthy 
computation (see Appendix), M is obtained as 

M = Gpbd'VU, (10) 

where, for the assumed velocity distributions in a rectangular channel, 

4n2+n+ 1 
(2n+ 1) (3n+ 1)' 

G =  

The moment-of-momentum equation under quasi-steady flow conditions, for the 
control volume bounded by the channel boundaries, the free surface, and the two 
planes 0 = const. separated by centreline distance ds, is 

Substitution of ( 4 ) ,  (8) and (10) into (12) yields 

b d U  -dU 
TC 2 v  ds 

Hp V'd' -- 0 ~ 7 ~  P-  = = Gpbd2 V - , 

which can be simplified to  

where f = 8 r o / p p  is the Darcy-Weisbach friction factor, and R = 2bd/P is the 
hydraulic radius. 

The channel-alignment perturbation will be taken to be a migrating sinusoid 

~ ( x ,  t)  = A(t) sin k(x-ct), (15) 

where x = coordinate distance along the unperturbed-channel axis (see figure l ) ,  
k = 2x/L is the wavenumber, L = meander wavelength, t = time, and c = migration 
velocity of the meander pattern. The channel-centreline displacement ~ ( t )  is limited 
to values much smaller than the meander wavelength (i.e. k A  4 1). The centreline 
curvature is then 

The differential equation for U is obtained by substituting (16) into (13) : 

sin k(x-ct). 
dU uf H Vk2A -+-U=- 
dx 8GR G 

The solution of this equation that is periodic and independent of the initial 
condition (i.e. the one valid for x/R 9 S G / u f )  is 

sin k(  x- ct -;), 8Hk2RA - U 
% - [a2f2 + 64G2R2k2]i 
- 

where the phase shift y ,  between U and the channel-axis displacement, is given by 

8GR 
tan y = -k (0 < y < in). 

af 
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If the inertial term is dominant over the friction term, then y - $c, in which case 
the velocity of the secondary current attains its maxima near the channel-axis 
inflections. In  the other limiting case, y - 0, and the secondary current is nearly in 
phase with the channel displacement. 

To continue the stability analysis, it is necessary to  adopt a closure equation 
relating the local rate of lateral displacement of the channel to the differential 
(between concave and convex banks) melting or dissolution in the case of incised ice 
or rock channels, or to differential scour and deposition in meandering alluvial 
channels. Note that the channel may be degrading, aggrading, shifting laterally, or 
even growing or becoming smaller this time, without affecting the analysis, which 
is concerned only with the local cross-channel differences in transport rates (of 
sediment, dissolved material, or heat) which produce meandering. The local details 
of the geometry and kinematics of meander growth and downstream migration will 
not be considered; instead the overall lateral movement of the incremental control 
volume shown in figure 1 will be examined. As the control volume shown in figure 
1 moves laterally, owing to differential erosion, melting, or dissolution, the difference 
between the rates of these processes a t  the concave and convex banks is given by 

dQL = dv, ds, (20) 

where vG = rate of local lateral displacement of the centroid of the elemental control 
volume of length ds utilized in the moment-of-momentum analysis. Because the 
channel centreline is curved, the centroid of the control volume is not a t  midwidth 
of the channel, but is displaced toward the concave bank, the displacement being 
inversely proportional to  the radius of curvature. It can be easily shown that for a 
rectangular cross section, the displacement is b /3rC .  Inclusion of this term in the 
calculation is critical; without i t ,  no dominant wavelength is predicted by the model. 
The rate of lateral migration is then 

I n  meandering alluvial rivers the rate of differential erosion-deposition across the 
channel is proportional to the rate of a ficticious lateral transport of sediment from 
the outer to the inner bank. I n  supraglacial (or rock-incised) streams, the rate of 
differential melting is proportional to the difference between the rates of heat transfer 
(or rock dissolution or erosion) at the concave and convex banks. All of these 
transport processes are affected by the secondary current, and their rates increase 
with its strength. In  the present analysis i t  will be assumed that the transfer rates 
are proportional to the velocity of the secondary current, or 

- u, d&L 
ds 

or, from (21) and (22), 

where h E positive dimensionless constant or proportionality. It turns out that the 
dominant wavelength and the corresponding phase shift are independent of A. 
Stability analyses of this type usually introduce the perturbation velocity or shear 
stress into one or another transport relation, which is then linearized. The result is 
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a relation similar to  (22)  and (23) .  Substitution of (15) and (18) into (23)  leads, after 
some algebraic manipulation, to 

[cosy - sin y cot k ( x  - c t ) ] ,  
8h VRHk2 

(1 + +b2k2) [a2f + 64k2G2R2]: 
= kc cot k ( x  - c t )  + 1 dA _ _  

A dt 
(24)  

where y is given by (19) .  Integration of (24)  yields 

8h VRHk sin y 
In A(t)  = constant - 1 - In Jsin k ( z  - ct)l [ [a2f + 64k2G2R2]: f] 

8h I.'RHk2 cos y 
t .  (25)  

+ (1 + +b2k2) [a2f + 64k2G2R2]i 

This relation can be satisfied only if 

8h VRHk sin y 
[a2f2 + 64k2G2R2]i ' 

c =  

Then 

A ( t )  = A, exp [s sin2 y 
8RG2 1 + (a2f 2/192G2R2) tan2 y 

= A ,  exp [*f sin2 y 
8RG2 1 + p 2  tan2 y 

where p2 = a2f2b2/192G2R2. 
The exponent in (27)  is positive for all k and for y in the interval 0 < y < in. Over 

this range of y, the amplitude of the sinusoidal perturbation increases exponentially 
with time. The exponent is zero for k = 0 (y = 0) and tends to zero again for k i .  GO 

y = in). Consequently, there is a dominant wavenumber for which the rate of growth 
is maximum. This wavenumber is determined by substituting (27)  into a2A/at ak = 0 ,  
which leads to 

tan y = p-i, 
and yields for the dominant wavenumber 

for which the phase shift obtained from (19)  is 

The corresponding celerity is 

-H . 843hVHRIb  
af i- 8 4 3  GRIb' 

c = hV-sin2y = 
G 

Finally, the amplitude of the dominant wave is given by 

A( t )  = A,exp 2/3h-sin2ycos2y- = A,exp 
24h H TRt "I b 

H 
[ G  
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3. Discussion of results and comparison with data 
The foregoing analysis demonstrates that  secondary currents produced by small, 

spatially periodic perturbations in the alignment of an otherwise straight channel can 
cause the amplitude of the perturbations to increase with time, and produce 
downstream migration of the resulting meanders. The stability analysis is linear, 
and, strictly speaking, is therefore applicable only to  small-amplitude meanders. 
However, the results of such analyses, and especially the expressions for the domin- 
ant frequency or wavelength, are often applied, with considerable success, to large- 
amplitude waves. 

The dominant wavelength given by (29) is 

The predicted meander wavelength is seen to be proportional to the square roots of 
the hydraulic radius and the channel width, and inversely proportional t,o the square 
root of the friction factor. The coefficient G given by ( l l ) ,  is a monotonically 
increasing function of n. The exponent n is related to the friction factor by (Karim 
& Kennedy 1981) 

Note that for the assumed geometry and velocity distributions G varies very slowly 
with n. For example, as f increases from 0.01 to 0.20, which corresponds to n 
decreasing from 10 to  2.2, G varies only from 0.63 to 0.55. 

The foregoing results are not very sensitive to  the assumed shape of flow section 
or to the distributions of the primary- or secondary-flow velocities. For example, for 
f = 0.04, which corresponds to  n = 5,  the wavelength relationship for a rectangular 
channel is 

L = 10.4($)'. (35) 

The foregoing analysis was repeated for a semicircular channel, of radius b ,  flowing 
full. The primary flow velocity was radially distributed according to  the power law, 
and the secondary-flow velocity was linearly distributed (corresponding to rigid-body) 
along every radius. The dominant wavelength, again for n = 5, was found to be 

L = 8.4 - , (:;Y (36) 

which, except for a small change in the coefficient, is identical with (35). 
The predicted phase shifts between the channel-axis waves and the secondary-flow 

strength for typical values of the independent variables is well above in,  indicating 
that the frictional torque is generally smaller than the torsional inertia. Such large 
phase shifts, which are associated with a strong tendency of the meanders to migrate 
downstream, have been observed in the case of weakly meandering channels (Gottlieb 
1976; Falc6n Aseanio 1979). Experiments conducted by the authors in weakly 
meandering ice-incised channels'also suggest that  meanders migrate much faster than 
they grow. However, data on flows on strongly curved channels indicate small phase 
shifts (Zimmermann 1974; Zimmermann & Kennedy 1978; Odgaard & Kennedy 
1982) and pronounced rates of meander growth compared with migration velocities 
(Dahlin 1974). While i t  is realized that the linearized analysis may not be adequate 
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to describe the flow in strongly meandering channels, it is noteworthy that Dahlin’s 
(1974) observation is consistent with the analytical model, (31) and ( 3 2 ) ,  developed 
here, which indicates that  the ratio of the rate of meander growth to migration 
velocity is 

The ratio is seen to increase as the meander grows in amplitude. The theoretical 
analysis, (30) and (37), also indicatesthat for small depth-to-width ratios and for large 
friction factors, the meanders will exhibit a stronger tendency to grow than to 
migrate. The former result is in general agreement with available observations. 
Vincent’s (1967) and Chang, Simons & Woolhiser’s (1971) experiments have demon- 
strated that for large depth-to-width ratios meandering does not develop in laboratory 
flumes. Parker (1976) concluded from an examination of field and laboratory data 
that alluvial channels tend to remain straight when the depth-to-width ratio is larger 
than 0.1. The evidence on the effects of friction on meandering is less conclusive. 
Nevertheless, Tanner (1960) found from his experiments that  it was necessary to  
introduce some roughness to the bed surface before his streams would meander. 
Quraishi (1944) observed that the devclopmcnt of meandering in initially straight 
channels in a sand-bed flume was always preceded by an increase in the friction 
through the formation of ripples. 

The meander migration velocity, given by (31), is proportional to the mean-flow 
velocity and decreases with increasing friction factor. I n  the case of deep channels 
with small friction factor, the meander-migration velocity is independent of the 
depth-to-width ratio and the friction factor : 

H -  
c = h - V .  

G 

In  the other limiting case, that  of shallow rough channels, c is proportional to the 
depth-to-width ratio and inversely proportional to the friction factor : 

H -R 1 
01 b f ’  

~ = 8 2 / 3 h - V - -  (38b)  

Figure 2 presents 158 sets of laboratory and 73 sets of field alluvial-stream data 
(summarized by Ikeda et al. 1981, p. 3721, as well as 8 supraglacial meandering 
streams (Leopold & Wolman 1960; Dahlin 1974) plotted in the format of (33). It is 
seen that the conformity of the data to the relation is surprisingly good, over a 
remarkably broad range of channel size. Moreover, there appears to be no distinction 
in the plot between ice- and alluvial-channel meanders. The relation for the straight 
line through the points is 

L = 2 0 ( 3  (39) 

which, for G = 0.6, a representative value, correspond to 01 = 0.27, a reasonable 
value. 

It is also of interest to compare the predicted meander wavelength, (33) or (39), 
with the corresponding expression obtained from other stability analyses. Anderson’s 
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(1967) theory based on the natural frequency of stationary transverse water waves 
yielded 

L = 102(bd)lfl, (40) 

where F = Froude number. The constant, 102, was evaluated experimentally from 
flume data. The alluvial alternate-bar theory (Parker 1976) led to  the expression 

where @(F)  = a function of the Froude number. For small values of the Froude 
number @(F)  - F-i, for which 

L - (7)i .  

It is noteworthy that the alluvial alternate-bar theory (Parker 1976), which utilizes 
the St Venant equations with depth-averaged quantities, and the theory developed 
here, which examines the secondary flow attendant to channel curvature, arrive at 
practically the same expression for the dominant meander length. However, the 
theory developed here is not necessarily limited to low-Froude-number flows. 

Engelund & Hansen (1967) concluded that the meander length of alluvial streams 
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is determined mainly by the friction factor and the depth. Hansen’s (1967) stability 
analysis suggested that in wide channels 

d 
L = 56- 

f ’  (431 

The bend stability theory of Ikeda et al. (1981) also emphasized the importance of 
depth and friction factor. For low-Froude-number flow in streams with an average 
transverse slope (based on field data) it yielded 

d 
L = 33.5- 

f ’  (44) 

while for streams with laterally flat beds at low Froude numbers i t  gives 

d 
L = 1 6 ~ F - ’ - .  (45) f 

These theories give in most cases results of the same order of magnitude, so that 
it is not immediately obvious from comparison with data which mechanism is truly 
responsible for the initiation and development of meanders in streams. Unfortunately, 
most of the earlier experimental and data-collection efforts were mainly concerned 
with the derivation of relations between the meander wavelength or amplitude and 
the river discharge or stream width. Thus reliable measurements of friction factors 
and flow depths are seldom included in published data on stream meanders, 
particularly in the case of natural rock- and ice-incised streams. Furthermore, much 
of the scatter observed in comparisons between theoretical relations and data (such 
as figure 2) is due to  sampling variability (related to the fact that  the observed 
meander or bar lengths are seldom constant - Chang et al. 1971) and the selection 
of a dominant discharge (required to calculate depth, width and friction factor). 
Nevertheless, the dominant wavelength predicted by (39) was found to provide a 
somewhat better fit to the data used in figure 2 than the relations yielded by theories 
based on other physical considerations - (40) and (42)-(44). 

4. Concluding remarks 
An analytical model was developed to investigate the role of secondary flow in the 

initiation and early development of river meandering. The model shows that the 
amplitude of a small sinusoidal perturbation in the alignment of an initially straight 
channel tends to  increase exponentially with time. The dominant wavelength and the 
corresponding phase shift between the channel-meander wave and the strength 
of the spiral motion were calculated. Analytical expressions were also developed for 
the rate of amplitude increase and the celerity of meander migration. The model 
developed here is limited to quasi-steady flow in weakly meandering prismatic 
channels. 

The results of the analytical model are in good agreement with data on meandering 
streams. The expression developed for the phase shift between the local secondary-flow 
strength and the local channel curvature is in conformity with values observed in 
weakly meandering sinuous channels. The expression for the dominant wavelength, 
even though developed from a small-perturbation analysis, is in surprisingly good 
agreement with measured wavelengths of meandering alluvial, rock-incised and 
ice-incised streams. 
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The secondary-current instability theory developed herein and the alluvial alternate- 
bar instability theory of Parker (1976) arrive a t  practically the same relationship for 
the dominant wavelength. Furthermore, the meander wavelength predicted by the 
bend theory (Ikeda et al. 1981) and the present secondary-current theory are of the 
same order of magnitude. It is thercfore not possible a t  this point to conclude through 
validation of existing theories with available data which mechanism (or mechanisms) 
is responsible €or the initiation and development of meanders. Three-dimensional 
stability analyses examining all mechanisms of meander initiation would be useful 
in resolving this issue, but would likely be difficult to develop. Cleverly designed 
experiments in which the competing mechanisms are controlled arc likely to be 
required before the question is resolved. 

This paper is bascd on work supported by the National Science Foundation under 
Grant, CEE 81-09252. The authors are indebted to Professor Gary Parker for his 
assistance in providing data and copies of figures prepared by him. 

Appendix 

secondary-current velocity is 
The moment-of-momentum flux corresponding to the vertical component of the 

n + l  2n3 n 

= (1) pbdzUv(?z+ 1) (2n+ 1 )  (3n+ 1) ?z+ 1 

pbd2 U V,  2n2 - - 
(2n+ 1 )  (3n+ 1 )  

where in this Appendix 1 = distance from the bank closest to the point. The factor 
d / 2 b  is suggested by continuity considerations of the secondary flow. 

The moment-of-momentum flux corresponding to the horizontal component of the 
secondary -current velocity is 

p b d Z U v  
n + l  n n(2n2+n+1) - 2n2+n+ 1 

- bd2 __ 
= pu’(T) n+ 1 (n+ 1) (2n+ 1) (3n+ 1 )  ( 2 n f  1 )  (3n+ 1 )  

Consequently 

pbd2 1J v. 4n2+n+ 1 M =  Mv+M - 
- (2n+ 1 )  (3n+ 1) 
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